Mark Scheme Capacitor Past Paper Questions Jan 2002—Jan 2010 (old spec)

3(a) graph to show:

straight line from origin
$$\checkmark$$
 end point at 4.5 (V), 9.0 (μ F) \checkmark Q3 Jan 2002 (2)

(b)(i) $\Delta W = V \Delta Q$ explained \checkmark energy stored or total work done in charging = area under graph or charge \times average voltage \checkmark energy stored = work done (= $\frac{1}{2}QV$) \checkmark

(ii)
$$Q = 2.0 \times 1.5 = 3.0 \,(\mu\text{C}) \checkmark$$

 $E (=\frac{1}{2} \,QV) = \frac{1}{2} \times 3.0 \times 10^{-6} \times 1.5 = 2.25 \times 10^{-6} \,\text{J} \checkmark$
[or $E = (\frac{1}{2}CV^2 = \frac{1}{2} \times 2.0 \times 10^{-6} \times 1.5^2 = 2.25 \times 10^{-6} \,\text{J}]$ (5)

(7)

2(a)
$$Q = CV \checkmark$$

 $(= 4.7 \times 10^{-6} \times 6.0) = 28 \times 10^{-6} \text{ C or } 28 \text{ }\mu\text{C} \checkmark$ (2)

(b) $E = \frac{1}{2}CV^2 \checkmark$ $= \frac{1}{2} \times 4.7 \times 10^{-6} \times 2.0^2 \checkmark$ $= 9.4 \times 10^{-6} \text{ J} \checkmark$ [or $E = \frac{1}{2}QV \checkmark$ $= \frac{1}{2} \times 9.4 \times 10^{-6} \times 2.0 \checkmark$ $= 9.4 \times 10^{-6} \text{ J} \checkmark$] (3)

(c) time constant is time taken for
$$V$$
 to fall to $\frac{V_o}{e}$

... V must fall to 2.2 V \checkmark time constant = 32 ms \checkmark [or draw tangent at t = 0 \checkmark intercept of tangent on t axis is time constant \checkmark accept value 30 - 35 ms \checkmark] [or $V = V_0 \exp(-t/RC)$ or $Q = Q_0 \exp(-t/RC)$ \checkmark correct substitution \checkmark time constant = 32 ms \checkmark]

(3)

(d) time constant =
$$RC \checkmark$$

$$R = \frac{32 \times 10^{-3}}{4.7 \times 10^{-6}} = 6800 \ \Omega \checkmark$$

(allow C.E. for value of time constant from (c)) (2)

(a)
$$Q = CV = 330 \times 9.0 = 2970 \, (\mu \text{C}) \checkmark$$
 Q4 Jan 2004
 $E = \frac{1}{2}QV = \frac{1}{2} \times 2.97 \times 10^{-3} \times 9.0 = 1.34 \times 10^{-2} \, \text{J} \checkmark$
[or $E = \frac{1}{2}CV^2 = \frac{1}{2} \times 300 \times 10^{-6} \times 9.0^2 \checkmark = 1.34 \times 10^{-2} \, \text{J} \checkmark$] (2)

(b) time constant
$$(=RC) = 470 \times 10^3 \times 330 \times 10^{-6} = 155 \text{ s}$$
 (1)

(c)
$$Q(=Q_0 e^{-t/RC}) = 2970 \times e^{-60/155} \checkmark$$

= 2020 (μ C) \checkmark

(allow C.E. for time constant from (b))

$$V\left(=\frac{Q}{C}\right) = \frac{2020}{330} = 6.11 \text{ V} \checkmark$$

(allow C.E. for
$$Q$$
)
[or $V = V_0 e^{-t/RC} \checkmark = 9.0 e^{-60/155} \checkmark = 6.11 \text{ V } \checkmark$]

(6)

Question 3 (a) (i) straight line through origin ✓ Q3 Jun 2005 (ii) $\frac{1}{\text{capacitance}} \checkmark$ 3 energy (stored by capacitor) ✓ (or work done (in charging capacitor)) (iii) $RC = 5.6 \times 10^{3} \times 6.8 \times 10^{-3} \checkmark (= 38.1 \text{ s})$ $V(= V_{0} \text{ e}^{-t/RC}) = 12 \text{ e}^{-26/38.1} \checkmark$ (b) (i) $= 6.1 \text{ V} \checkmark (6.06 \text{ V})$ [or equivalent using $Q = Q_0 e^{-t/RC}$ and Q = CV] $(RC)' = 2.8 \times 10^3 \times 6.8 \times 10^{-3} \checkmark (= 19.0 \text{ s})$ (ii) $V = 6.06 \text{ e}^{-14/19} = 2.9(0) \text{ V} \checkmark$ (use of V' = 6.1 V gives V = 2.9(2) V) (iii) pd/V 7 12 6 time/s 0 26

Question 2		
(a)	$E \propto V^2 \text{ (or } E = {}^{1}/{}_{2}CV^2) \checkmark$ Q2 Jan 2006 pd after 25 s = 6 V \checkmark	2
(b) (i)	use of $Q = Q_0 e^{-t/RC}$ or $V = V_0 e^{-t/RC} \checkmark$ (e.g. $6 = 12 e^{-25/RC}$) gives $e^{\frac{25}{RC}} = \frac{12}{6}$ and $\frac{25}{RC} = \ln 2 \checkmark$ ($RC = 36(.1) \text{ s}$) [alternatives for (i): $V = 12 e^{-25/36}$ gives $V = 6.0 \text{ V} \checkmark (5.99 \text{ V})$ or time for pd to halve is $0.69RC$ $\therefore RC = \frac{25}{0.69} \checkmark = 36(.2) \text{ s}$] $R = \frac{36.1}{680 \times 10^{-6}} \checkmark = 5.3(0) \times 10^4 \Omega \checkmark$	4
	Total	6

Quest	tion 2			
(a)		appropriate resistor values suggested e.g. 0.5 MΩ to 10 MΩ ✓		
		max 2 from Q2 Jan 2008		
		require time constant ≈ overall timing period ✓		
		suitable overall timing period indicated e.g. 30 s to 5 min or suitable value for time constant indicated e.g. 15 s to 5 min ✓	3	
		suitable timing interval indicated e.g. 5s to 20s ✓		
		justification by calculation e.g. 60s/30 $\mu\text{F}\approx2.0\text{M}\Omega$ ✓		
(b)	(i)	$\ln V_0 = 2.15 \checkmark$ $\therefore V_0 = e^{2.15} = 8.6 \lor \checkmark$		
	(ii)	gradient = $-(1/RC) \checkmark = (-) \frac{2.15 - 1.00}{50} = (-) 0.0230 (s^{-1}) \checkmark$		
		time constant = 43(.5)s ✓		
		[or when $t = T$, $V = V_0 e^{-1}$ (= 3.16V) \checkmark		
		$\ln V = \ln 3.16 = 1.15 \checkmark$	--	
		from graph, when $\ln V = 1.15$, $T = 43.5$ s \checkmark]	max 5	
		[or when $t = 50 \text{ s}$, $\ln V = V_0 - (t/RC)$ gives		
		1.00 = 2.15 − (50/ <i>RC</i>) ✓		
		\therefore (50/RC) = 1.15 \checkmark and RC = (50/1.15) = 43.5 s \checkmark]		
	(iii)	$C = \frac{43.5}{91 \times 10^3} = 480 (477) \mu\text{F} \checkmark$		
		Total	8	

Que	stion 3			
(a)	(i)	1	(net) electron flow is round circuit (from Q) to P ✓	
		2	(rate of) electron flow (or current) decreases (as t increases) [or repulsion from electrons already on ${\bf P}$ makes flow decrease] \checkmark	
		3	electron flow (or current) ceases when pd across PQ = emf (or 2.0 V) \checkmark	
		4	electron flow rate (or current) decreases exponentially ✓	
	(ii)	5	pd across capacitor increases ✓ Q3 Jan 2009	max 5
		6	pd across resistor decreases ✓	
		7	$V_{\rm R}$ + $V_{\rm C}$ = 2.0 V (or = emf) \checkmark	
		8	$V_{ m C}$ increases to 2.0 V and $V_{ m R}$ decreases to 0 V \checkmark	
		9	$V_{\rm C}$ (or $V_{\rm R}$) changes exponentially with time \checkmark	

		То	tal	9	1
		parabolic shape, checked from points on line, which reaches 2.0 V ✓			
	(ii)	line drawn as a curve of increasing gradient that starts at (0, 0) ✓		4	
(b)	(i)	$E (= \frac{1}{2} C V^2) = \frac{1}{2} \times 50 \times 10^{-6} \times 2.0^2 \checkmark = 1.0 \times 10^{-4} \text{ J} \checkmark$			

Question 2		
(a)	$C = \frac{Q}{V} \checkmark$ Q2 Jun 2009	
	where Q = charge stored by (one plate of) capacitor	2
	V = pd across capacitor ✓	
	[or C = charge required to increase pd by 1 V ✓✓]	
(b)	$\Delta W = V \Delta Q$ explained \checkmark	
	work done (or energy stored) = area under graph (or calculated by reference to mean V) ✓	3
	∴ energy stored = work done (= ½ Q V) ✓	
(c) (i)	$C\left(=\frac{Q}{V}\right) = \frac{9.0 \times 10^{-6}}{45} \checkmark = 2.0 \times 10^{-7} \text{ F (0.20 \mu\text{F)}} \checkmark$	
(ii)	$E\left(=\frac{Q^2}{2C}\right) = \frac{\left(3.0 \times 10^{-6}\right)^2}{2 \times 2.0 \times 10^{-7}} \checkmark = 2.25 \times 10^{-5} \text{ J (23 µJ)} \checkmark$	
	[or $E = \frac{1}{2} C V^2$] = $\frac{1}{2} \times 2.0 \times 10^{-7} \times 15^2 \checkmark = 2.25 \times 10^{-5} \text{ J} \checkmark$	
	or $E = \frac{1}{2} Q V = \frac{1}{2} \times 3.0 \times 10^{-6} \times 15 \checkmark = 2.25 \times 10^{-5} \text{ J} \checkmark$	
	Total	9

Question 4			
(a)		electric field strength $E\left(=\frac{V}{d}\right) = \frac{1.90 \times 10^5}{80 \times 10^{-3}}$ Q4 Jan 2010	1
		= $2.4 \times 10^6 \mathrm{V m^{-1}} (\mathrm{or} \mathrm{N} \mathrm{C}^{-1}) \checkmark (2.38 \times 10^6)$	
(b)	(i)	charge on sphere Q (= $C V$) = 5.6 × 10 ⁻¹³ × 190 × 10 ³ ✓	
		= 1.1×10^{-7} C \checkmark (0.106 μ C)	
		charge is positive ✓	
	(ii)	time t between consecutive contacts of sphere on plate P_2 is $t = \frac{1}{420}$ minute $= \frac{60}{420} = \frac{1}{7}$ s \checkmark	4
		current in microammeter $I = \left(=\frac{Q}{t}\right) = \frac{1.06 \times 10^{-7}}{(1/7)} \checkmark$	
		$= 7.4 \times 10^{-7} \text{A} \checkmark (0.742 \mu\text{A})$	
(c)		max 3 from	
		sphere gains electrons (or is charged –) at P₂ and is repelled by P₂ (or attracted by P₁ or experiences correct force in field) ✓	
		sphere loses electrons at (or negative charge) P₁ ✓	max 3
		explanation of return of sphere from P₁ to P₂ ✓	
		sphere reaches same potential as plate on contact ✓	
		[accept arguments based on sphere becoming charged + at P ₁]	
		Total	10